I've always imagined how useful it would be to have a cheat sheet-style comparison of data structures in Java and C++. With such a resource, mastering any programming language would be much easier. After procrastinating for nearly 8–9 years, I've finally put it together. Let’s begin.
Vector 
a vector is a dynamic array that can grow and shrink in size automatically while providing fast access to its elements, typically implemented using contiguous memory for efficient indexing. 
| Operation | C++  | Java ( Vector / ArrayList )  | Time Complexity  | 
| begin() | v.begin() returns iterator to first element  | v.firstElement()  
 Returns the first element | O(1) | 
| end() | v.end() return iterator to position after last element  | No direct equivalent ( can use v.lastElement()) | O(1)  | 
| size() - return number of elements | v.size()  | v.size()  | O(1)  | 
| empty() -  checks if empty 
 | v.empty() | v.isEmpty()  | O(1)  | 
| at()  | v.at( index ) return element at index | v.get( index ) | O( 1 )  | 
| assign() | v.assign(n, val) replaces elements | No direct equivalent - v.clear() + v.addAll() | O(n)  | 
| push_back() - add element in last  | v.push_back(vao) | v.add(val) | O(1)  | 
| pop_back() - remove last element | v.pop_back() | v.remove( v.size() - 1) | O(1)   | 
| insert() - element add in a position  | v.insert(it, val) | v.add( index, val ) | O(n)  | 
| erase() - removes element at position 
 | v.erase(it)  | v.remove(index)  | O(n)  | 
| clear() | v.clear() | v.clear() | O(n) | 
LinkedList 
Both C++ std::list and Java LinkedList implement a double linked list, making them efficient for insertions and deletions but slower for random access. 
|   Operation |  C++ ( list )  |   Java ( LinkedList ) |  Time Complexity | 
|   Add element at the   end | list.push_back(val) | list.add( val )  |  O(1)  | 
|  Add an element at the front | list.push_front(val) | list.addFirst(val)  |  O(1)  | 
| Insert at position | list.insert( it, val ) |   list.add( index, val ) |  O(n)  | 
|  Remove last element |  list. pop_back() | list.removeLast() |  O(1) | 
|  Remove first element |  list.pop_front() |  list.removeFirst() |  O(1) | 
|   Remove element by value  |  list.remove(val) |  list.remove(Object o) | O(n) | 
|  Remove element by index |  No operation  |  list.remove(index) | O(n) | 
|   Access first element | list.front() |  list.getFirst() | O(1)  | 
| Access last element  |   list.back() |   list.getLast() |  O(1) | 
| Access element by index  |  No operation |  list.get( index )  | O(n)  | 
| Check size |  list.size() | list.size() | O(1)  | 
|  Check if empty |  list.empty() |  list.isEmpty() | O(1) | 
|  Reverse list |  list.reverse() | Collections.reverse(list); | O(n) | 
|  Sort list |   list.sort() |  Collections.sort(list) |  O(n log n) | 
|  Clear list |   list.clear() |   list.clear() |   O(n) | 
|  Iterate through elements |   for(auto it = list.begin(), it != list.end(); ++it)  |  for( E item: list)  | O(n)  | 
Queue 
A Queue is a linear data structure that follows the FIFO (First In, First Out) principle. This means that elements are added at the back (enqueue) and removed from the front (dequeue), just like a real-world queue (e.g., a line at a ticket counter).
In Java Linked list worked as Queue and C++ there is dedicated Queue in STL 
|    Operation |   C++  |  Java ( LinkedLIst )  |  Time Complexity | 
|   Enqueue ( Add to back )  |  q.push(val)  |  q.add(val) or  q.offer( val )  |   O(1) | 
|  Dequeue ( remove from front )  |   q.pop(); | q.pop() or q.remove() | O(1)  | 
|   Access front element  |  q.front() |  q.peek() |   O(1)  | 
|   Access last element |  q.back() |  No operation |  O(1)  | 
|  Check if queue is empty  |  q.empty() |  q.isEmpty() |  O(1)  | 
|  Check queue size  | q.size() |  q.size() |  O(n) | 
|   iteration | while(!q.empty() )  | for( E item: q ) |  O(n)  | 
Deque
A Deque (pronounced "deck") stands for Double-Ended Queue. It is a linear data structure that allows insertions and deletions from both the front and the back, unlike a regular queue which follows FIFO (First-In-First-Out).
|     Operation |  C++  |   Java  |   Time Complexity | 
|  Declaration | deque < int > dq;  | Deque<Integer> dq = new ArrayDeque<>(); |  O(1)  | 
|  Insert at front  | dq.push_front(val) | dq.addFirst(val)  | O(1)  | 
|  Insert at back |  dq.push_back(val) | dq.addLast(val)  | O(1)  | 
|  Remove from front |  dq.pop_front() | dq.removeFirst(); | O(1)  | 
|  Remove from back |  dq.pop_back() | dq.removeLast |  O(1)  | 
| Access front | dq.front() | dq.getFirst(); |  O(1) | 
| Access back  |  dq.back() | dq.getLast(); |  O(1)  | 
|  Check size |  dq.size() |  dq.size() |  O(1)  | 
|  Check if empty |  dq.empty() | dq.isEmpty() |  O(1) | 
|  Clear deque  |  dq.clear() |  dq.clear() | O(n) | 
Stack
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle. This means that the last element added to the stack is the first one to be removed—similar to a stack of plates, where you add new plates on top and remove the topmost plate first.
|   Operation |   C++ |   Java |  Time Complexity | 
|  Declaration |  stack< int > st; | Stack<Integer> st = new Stack<>() |  O(1)  | 
|  Push  |  st.push(x) | st.push(x); | O(1)  | 
|  Pop | st.pop() | st.pop() | O(1) | 
| Top element  | st.top(); | st.peek() | O(1)  | 
| size |  st.size() |  st.size() | O(1_ | 
| empty | st.empty() | st.isEmpty() |  O(1)  | 
| clear | st.clear() | st.clear() |  O(n)  |